Developing a bi-objective optimization model for solving the availability allocation problem in repairable series–parallel systems by NSGA II

Authors

  • Maghsoud Amiri Department of Industrial Management, Allameh Tabataba’i University, Tehran, Iran
  • Mostafa Khajeh Department of Industrial Management, Qom Branch, Islamic Azad University, P.O. Box 3749113191, Qom, Iran
Abstract:

Bi-objective optimization of the availability allocation problem in a series–parallel system with repairable components is aimed in this paper. The two objectives of the problem are the availability of the system and the total cost of the system. Regarding the previous studies in series–parallel systems, the main contribution of this study is to expand the redundancy allocation problems to systems that have repairable components. Therefore, the considered systems in this paper are the systems that have repairable components in their configurations and subsystems. Due to the complexity of the model, a meta-heuristic method called as non-dominated sorting genetic algorithm is applied to find Pareto front. After finding the Pareto front, a procedure is used to select the best solution from the Pareto front.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization

Mathematical programming and artificial intelligence (AI) methods are known as the most effective and applicable procedures to form manufacturing cells in designing a cellular manufacturing system (CMS). In this paper, a bi-objective programming model is presented to consider the cell formation problem that is solved by a proposed multi-objective particle swarm optimization (MOPSO). The model c...

full text

Solving a bi-objective location routing problem by a NSGA-II combined with clustering approach: application in waste collection problem

It is observed that the separated design of location for depots and routing for servicing customers often reach a suboptimal solution. So, solving location and routing problem simultaneously could achieve better results. In this paper, waste collection problem is considered with regard to economic and societal objective functions. A non-dominated sorting genetic algorithm (NSGA-II) is used to l...

full text

A Multi Objective Optimization Model for Redundancy Allocation Problems in Series-Parallel Systems with Repairable Components

The main goal in this paper is to propose an optimization model for determining the structure of a series-parallel system. Regarding the previous studies in series-parallel systems, the main contribution of this study is to expand the redundancy allocation parallel to systems that have repairable components. The considered optimization model has two objectives: maximizing the system mean time t...

full text

Developing a New Bi-Objective Functions Model for a Hierarchical Location-Allocation Problem Using the Queuing Theory and Mathematical Programming

In this research, a hierarchical location-allocation problem is modeled in a queue framework. The queue model is considered as M/M/1/k, in which system capacity is finite, equals to k. This is the main contribution of the current research. Customer's enters to the system in order to find the service according to a Poisson. In this problem, the hierarchical location-allocation model is considere...

full text

Solving a location-allocation problem by a fuzzy self-adaptive NSGA-II

This paper proposes a modified non-dominated sorting genetic algorithm (NSGA-II) for a bi-objective location-allocation model. The purpose is to define the best places and capacity of the distribution centers as well as to allocate consumers, in such a way that uncertain consumers demands are satisfied. The objectives of the mixed-integer non-linear programming (MINLP) model are to (1) minimize...

full text

Set a bi-objective redundancy allocation model to optimize the reliability and cost of the Series-parallel systems using NSGA II ‎problem‎

With the huge global and wide range of attention placed upon quality, promoting and optimize the reliability of the products during the design process has turned out to be a high priority. In this study, the researcher have adopted one of the existing models in the reliability science and propose a bi-objective model for redundancy allocation in the series-parallel systems in accordance with th...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  -

publication date 2016-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023